1. Consider the following one-sided search model. There is a continuum of agents who each maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t),$$

where $\beta = \frac{1}{1+r}$ is the discount factor, with $r > 0$, and $u(\cdot)$ has the same properties as in my notes. An unemployed agent receives an unemployment benefit of $b > 0$ at the beginning of each period, and then receives a wage offer. The wage offer is w_1 with probability π and 0 with probability $1 - \pi$, where $w_1 > 0$, and $0 < \pi < 1$. When employed, a worker is separated at the end of the period with probability δ, where $0 < \delta < 1$. A worker who receives a wage w_1 at the beginning of the period may receive a wage reduction at the end of the period, with probability ρ, where $0 < \rho < 1$. Note that an employed worker either keeps his or her job at the wage w_1, is separated, or keeps the job with a wage reduction to w_2. If a wage reduction occurs, the worker learns at the end of the period that his or her wage will be $w_2 < w_1$ forever, if that job is retained. An employed worker earning a wage w_2 has a separation rate of δ. On learning of a wage reduction, the worker has the option of quitting and searching for another job. Note that any new job offers are always at a wage of w_1 or 0.

(a) Write down Bellman equations which determine the values (as of the end of the period) of being unemployed, employed at wage w_1, and employed at wage w_2.

(b) Determine conditions under which an employed worker will or will not quit a job after receiving a wage reduction.

(c) Determine how b, w_1, w_2, π, and ρ affect an unemployed worker’s decision concerning whether or not to quit when a wage reduction occurs.

(d) Determine how the steady state unemployment rate depends on b.

6E:204 Macroeconomics
Assignment 8

STEVE WILLIAMSON

November 14, 2000

Due: November 21, 1998