1. Consider a representative agent model where the representative consumer has preferences given by

$$E_0 \int_{t=0}^{\infty} \beta^t [\ln c_t + \ln l_t]$$

The consumer has one unit endowment of time to allocate between consumption and leisure each period. The production technology is given by

$$y_t = z_t k_t^\alpha n_t^{1-\alpha},$$

where y_t is output, z_t is a technology shock, k_t is the capital input, and n_t is the labor input, with $0 < \alpha < 1$. The capital stock depreciates by 100% each period. In period t, it requires one unit of consumption goods to produce one unit of capital, and this capital becomes productive in period $t+1$. Assume that

$$z_{t+1} = z_t \epsilon_{t+1},$$

where $\ln \epsilon_t$ is an i.i.d. random variable with a mean of zero and $0 < \rho < 1$.

(a) Solve for a competitive equilibrium.
(b) How does employment vary with the technology shock z_t? Is this model capable of explaining observed fluctuations in employment? Explain.
(c) How does persistence in the technology shock ($\rho > 0$) affect consumption, investment, and output over time? Which of these properties do you think are special to this example? Explain.

2. Suppose a consumer with preferences given by

$$\int_{t=0}^{\infty} \beta^t e^{-\alpha c_t},$$

where $0 < \beta < 1$, c_t is consumption, and $\alpha > 0$. The consumer has initial assets A_0 and can borrow and lend at a real interest rate r in each period. The consumer’s income in period t is w_t, for $t = 0, 1, 2, \ldots$.
(a) Show that the change in consumption from periods t to $t+1$ depends only on α, β, and r, and derive this relationship. In what sense is consumption smooth relative to income?

(b) How is the change in consumption affected by changes in each of α, β, and r? Explain your results.