Collateral Scarcity, Inflation, and the Policy Trap: A New Monetarist Perspective

David Andolfatto and Stephen Williamson
Federal Reserve Bank of St. Louis

November 2014
The views expressed are ours and do not necessarily reflect official positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.
Key Questions

- An important feature of the financial crisis, and the post-crisis period, is a scarcity of safe assets.
- A safe-asset scarcity implies
 - low real rates of interest
 - higher inflation rates than would normally be observed with short-term nominal interest rates at zero.
- What implications does a safe-asset scarcity have for monetary policy?
 - How might policy work differently?
 - What is an optimal policy under these circumstances?
 - What do conventional monetary policy rules – primarily the Taylor rule – imply for economic performance?
Key Results

- Safe asset scarcity associated with:
 - binding asset market constraints
 - liquidity premium on government debt
 - non-Ricardian economy

- Given a safe asset scarcity,
 - a lower nominal interest rate reduces consumption and output.
 - zero lower bound is suboptimal.

- Taylor rules can go wrong.
 - Taylor principle can lead to multiple steady states, and multiple equilibria converging to the zero lower bound.
 - Failure to account correctly for endogeneity in the real rate of interest can lead to failure to achieve a specified inflation target.

- Central banker may think he/she has learned that higher nominal interest rates imply lower inflation. But inflation can be increased permanently only by increasing the nominal interest rate.
Literature

- New Monetarism: Williamson and Wright (2010a, 2010b).
Model

- Continuum of households.
- Each household has:
 - continuum of consumers with unit mass
 - a worker/seller
- Household maximizes
 \[E_0 \sum_{t=0}^{\infty} \beta^t \left[\int_0^1 u(c_t(i)) \, di - \gamma n_t \right], \]
 - \(i \) indexes consumers in the household
 - \(c_t(i) \) is consumption, \(n_t \) is labor supply.
 - one unit labor input produces one unit output; household cannot consume its own output.
Model: Timing

- Household enters the period with a portfolio of assets – maturing government bonds and money.
- Trade on competitive asset market – new bond issues by government, lump sum taxation, central bank open market operations.
- Worker/seller produces output – can sell it on market 1 or market 2.
- Market 1: only money accepted in exchange for goods.
- Market 2: money, government bonds, credit accepted in exchange for goods.
- θ consumers chosen at random (by nature) to go to market 1, $1 - \theta$ to market 2.
- Household allocates assets to consumers, who go to each market and consume on the spot.
- Large household stands in for financial intermediation arrangements.
Household’s Problem

Maximize

\[E_0 \sum_{t=0}^{\infty} \beta^t \left[\theta u(c^1_t) + (1 - \theta) u(c^2_t) - \gamma n_t \right]. \]

Subject to:

\[\theta c^1_t + q_t b^2_t + q_t b^a_{t+1} + m^2_t \leq \frac{p_{t-1}}{p_t} (m_t + b^a_t + b^g_t) + \tau_t, \text{ [finance constraint]} \]

\[b^a_{t+1} \geq 0, \text{ [key asset market constraint]} \]

\[(1 - \theta) c^2_t = b^2_t + m^2_t + \kappa_t, \text{ [market 2]} \]

\[\theta c^1_t + q_t (1 - \theta) c^2_t + m_{t+1} + b^g_{t+1} + q_t b^a_{t+1} = \frac{p_{t-1}}{p_t} (m_t + b^a_t + b^g_t) + \tau_t + n_t + q_t \kappa_t - \kappa_t \]
Consolidated government budget constraints:

\[\bar{m}_0 + q_0 \bar{b}_0 = \tau_0 \]

\[\bar{m}_t - \frac{p_{t-1}}{p_t} \bar{m}_{t-1} + q_t \bar{b}_t - \frac{p_{t-1}}{p_t} \bar{b}_{t-1} = \tau_t, \quad t = 1, 2, 3, \ldots \]

Fiscal policy rule:

\[V_t = \bar{m}_t + q_t \bar{b}_t, \]

Implies

\[\tau_0 = V_0, \]

\[\tau_t = V_t - \frac{p_{t-1}}{p_t} V_{t-1} - \bar{b}_{t-1} \frac{p_{t-1}}{p_t} (1 - q_{t-1}), \]

\[V_t \] exogenous – fiscal policy will in general be suboptimal, with alternative assumptions about monetary policy: exogenous \(q_t \), optimal, Taylor rule.
\[\{ c_t^1, c_t^2, \pi_{t+1} \}_{t=0}^{\infty} \] satisfying

\[-\gamma + \beta E_t \left[\frac{u'(c_{t+1}^1)}{\pi_{t+1}} \right] = 0, \]

\[u'(c_t^2) - q_t u'(c_t^1) = 0, \]

\[u'(c_t^2) - \gamma = 0 \text{ and } V_t + q_t \kappa_t \geq \theta c_t^1 + (1 - \theta) q_t c_t^2, \]

or

\[u'(c_t^2) - \gamma \geq 0 \text{ and } V_t + q_t \kappa_t = \theta c_t^1 + (1 - \theta) q_t c_t^2, \]
$q_t = \frac{u'(c_t^2)}{\gamma} \beta E_t \left[\frac{u'(c_{t+1})}{\pi_{t+1} u'(c_t)} \right] \quad \text{[nominal bond]}$

liquidity premium \quad \text{fundamental}

$1 = \frac{u'(c_t^1)}{\gamma} \beta E_t \left[\frac{u'(c_{t+1})}{\pi_{t+1} u'(c_t)} \right] \quad \text{[money]}$

liquidity premium \quad \text{fundamental}

$s_t^a = \frac{u'(c_t^2)}{\gamma} \beta E_t \left[\frac{u'(c_{t+1})}{u'(c_t)} \right] \quad \text{[real bond]}$

liquidity premium \quad \text{fundamental}
Unconstrained Equilibrium

- Asset market constraint does not bind – household holds some bonds over until the next period.
- $u'(c^2_t) - \gamma$, or $c^2_t = c^*$, so no liquidity premium on bonds.

\[
\begin{align*}
 u'(c^1_t) &= \frac{\gamma}{q_t}, \\
 \pi_t &= \frac{\beta}{q_t}.
\end{align*}
\]

\[
V_t + q_t \kappa_t \geq \theta c^1_t + (1 - \theta) q_t c^*
\]

- Friedman rule is optimal if it’s attainable, i.e. if and only if

\[
V_t + \kappa_t \geq c^*
\]

for all t.
Asset market constraint binds – all bonds used in transactions, and credit constraint binds.

\((c_t^1, c_t^2)\) solve

\[
V_t + q_t \kappa_t = \theta c_t^1 + (1 - \theta) q_t c_t^2
\]

\[
u'(c_t^2) - q_t u'(c_t^1) = 0,
\]

Constrained equilibrium is feasible in period \(t\) if and only if

\[
V_t + \kappa_t < c^*
\]

i.e. if and only if Friedman rule is not attainable.

If that condition holds, then equilibrium is constrained for \(q_t \in (\hat{q}, 1]\), and unconstrained for \(q_t \leq \hat{q}\).
If q increases in a constrained equilibrium (nominal interest rate falls),

- c_1 may rise or fall.
- c_2 falls.
- output falls.
- welfare falls if q is sufficiently close to 1 – zero lower bound is suboptimal, given fiscal policy.

If $V_t = V$ and $\kappa_t = \kappa$ for all t,

\[s^a_t = \frac{u'(c_2)\beta}{\gamma}. \]
Figure 7: Equilibrium Allocations

\[u'(c_2) = q_1 u'(c_1) \]

\[u'(c_2) = u'(c_1) \]
Tighter Credit Limit in a Constrained Equilibrium

- Reduction in κ_t – financial crisis shock.
- c_1, c_2, and output decline.
- Inflation rate rises, given the nominal interest rate.
- Same effects as for a reduction in V_t, so government debt substitutes for credit.
Figure 8: A Decrease in V or κ, Constrained Equilibrium
Liquidity Trap

- What happens when $q = 1$?

 - Unconstrained equilibrium:
 - $c_1 = c_2 = c^*$, $\pi = \beta$
 - Friedman rule.

 - Constrained equilibrium:
 - $c_1 = c_2 = V + \kappa < c^*$
 - $\pi = \frac{\beta u'(V + \kappa)}{\gamma}$
 - Gross real interest rate $= \frac{\gamma}{\beta u'(V + \kappa)}$
Taylor Rule

- Clear what optimal monetary policy is, given fiscal policy. What if the central bank follows a suboptimal, but conventional, rule?

- Taylor rule:
 \[
 \frac{1}{q_t} = \max[\pi_t^\alpha (\pi^*)^{1-\alpha} x_t, 1]
 \]

- $x_t =$ adjustment the central bank makes for the real rate of return on government debt.

- $\alpha > 0$, with $\alpha > 1$ defining the “Taylor principle.”
Taylor Rule: Unconstrained Equilibrium

- Confine attention to $V_t = V$, $\kappa_t = \kappa$, deterministic equilibria.
- Consider two alternatives:
 - $x_t = \frac{1}{\beta}$
 - $x_t = \frac{1}{\sigma_t^2}$ (account for endogeneity in the real rate).
- $\alpha > 1$ implies two steady states:
 - $\pi = \pi^*$, $q = \frac{\beta}{\pi^*}$
 - $\pi = \beta$, $q = 1$
 - with endogenous x_t, a continuum of nonstationary equilibria converging to the zero lower bound.
- $\alpha < 1$ implies one steady state:
 - $\pi = \pi^*$, $q = \frac{\beta}{\pi^*}$
 - with endogenous x_t, a continuum of nonstationary equilibria converging to the steady state.
Figure 10: Taylor Rule Equilibrium, Unconstrained, $\alpha > 1$
Figure 11: Taylor Rule Equilibrium, Unconstrained, $\alpha < 1$

\[[(q_t \pi^*)/\beta]^{1-\alpha} \]
Taylor Rule: Constrained Equilibrium

- $x_t = \frac{1}{\beta}$ implies Taylor rule ill-behaved – won’t in general yield an equilibrium where $\pi = \pi^*$.
- $x_t = \frac{1}{s_t^2}$ implies behavior similar to unconstrained case, but with a different lower bound on inflation.
Figure 15: Taylor Rule Equilibrium, Constrained, $\alpha < 1$, Endogenous Real Interest Rate

\[
\pi_{t+1} = \beta u'(V+\kappa)/\gamma
\]

\[
\pi_t^{\alpha(\pi^*)^{1-\alpha}}
\]

(0,0)
Figure 14: Taylor Rule Equilibrium, Constrained, $\alpha > 1$, Endogenous Real Interest Rate

\[\beta u'(V+\kappa)/\gamma \]

\[\pi_{t+1} \]

\[\pi_{t} \]

\[\pi_{t} \alpha(\pi^{*})^{1-\alpha} \]

\[(0,0) \]

\[\pi_{0} \]

\[\pi_{1} \]

\[\pi_{2} \]

\[\pi_{t} \]
Market Segmentation and Liquidity Effects

- No production – each household has a fixed endowment y per period.
- Household preferences
 \[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t^j), \]
 \(j = T \) denotes a trader household, \(j = N \) denotes a non-trader.
- \(\sigma \) traders, \(1 - \sigma \) non-traders.
- Traders participate in asset markets, have access to credit, and pay taxes
- Non-traders exist in a cash-only world.

Constraints

- **Traders:**

\[
q_t c_t^T + q_t b_{t+1}^a \leq \frac{(m_t^T + b_t^g + b_t^a)}{\pi_t} + \frac{\tau_t}{\sigma} + q_t \phi_t y,
\]

\[
q_t c_t^T + m_{t+1}^T + b_{t+1}^g + q_t b_{t+1}^a = \frac{(m_t^T + b_t^g + b_t^a)}{\pi_t} \]

\[
+ \frac{\tau_t}{\sigma} + q_t \phi_t y + (1 - \phi_t)y.
\]

- **Non-traders:**

\[
c_t^N \leq \frac{m_t^N + b_t^N}{\pi_t},
\]

\[
c_t^N + m_{t+1}^N + b_{t+1}^N = \frac{m_t^N + b_t^N}{\pi_t} + y.
\]
\{\tau_0, \tau_1, \tau_2, \ldots\} \text{ exogenous.}

\begin{align*}
\frac{c_t}{\pi_t}^N &= \frac{y}{\pi_t}, \\
\frac{c_t}{\sigma}^T &= \frac{y \left[1 - \frac{(1-\sigma)}{\pi_t} \right]}{\sigma}
\end{align*}
Equilibrium, Continued

- **Unconstrained equilibrium**

\[u'(c_t^T) = \beta E_t \left[\frac{u'(c_{t+1}^T)}{\pi_{t+1} q_{t+1}} \right]. \]

\[\tau_t \geq y \left[q_t (1 - \sigma \phi_t) - \frac{q_t (1 - \sigma)}{\pi_t} - \frac{\sigma (1 - \phi_{t-1})}{\pi_t} \right] \]

- **Constrained equilibrium**

\[u'(c_t^T) \geq \beta E_t \left[\frac{u'(c_{t+1}^T)}{\pi_{t+1} q_{t+1}} \right]. \]

\[\tau_t = y \left[q_t (1 - \sigma \phi_t) - \frac{q_t (1 - \sigma)}{\pi_t} - \frac{\sigma (1 - \phi_{t-1})}{\pi_t} \right] \]
Unconstrained equilibrium:

- Random experimentation by central banker may make him/her think that lowering the nominal interest rate raises inflation.
- But raising inflation permanently requires raising the nominal interest rate permanently.
- Taylor rule has similar properties to the baseline model – but inflation continues to fall after the nominal interest rate reaches the zero lower bound.

Constrained equilibrium:

- Taylor rule can be particularly ill-behaved – equilibrium does not exist under weak conditions.
Figure 16: Effects of a Nominal Interest Rate Increase in Period T

\[i_t \]

\[r_t \]

\[\rho \]
Figure 17: Taylor Rule Dynamics

\[\frac{[-\rho+(\alpha-1)i^*]}{\alpha} \]
Conclusions

- Safe asset scarcity associated with:
 - binding asset market constraints
 - liquidity premium on government debt
 - non-Ricardian economy

- Given a safe asset scarcity,
 - a lower nominal interest rate reduces consumption and output.
 - zero lower bound is suboptimal.

- Taylor rules can go wrong.
 - Taylor principle can lead to multiple steady states, and multiple equilibria converging to the zero lower bound.
 - Failure to account correctly for endogeneity in the real rate of interest can lead to failure to achieve a specified inflation target.

- Central banker may think he/she has learned that higher nominal interest rates imply lower inflation. But inflation can be increased permanently only by increasing the nominal interest rate.